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ABSTRACT

This report consists of two parts. In the first, we present mlmer of enhancements to the
feature recognition work presented in last year's GN&C Rede Report on feature recognition
algorithms [1]. These include improvements to the scalariance properties of detected features,
greater robustness in feature recognition, and implertientahanges intended to decrease pro-
cessing time. The second part focuses onTikiee Around Sudy in which synthetic imagery of
a virtual camera orbiting a small body is used for catalogegation, feature detection and state
estimation. We will present in this report details of the @uiter vision aspects of this study. This
includes incorporation of previous algorithmic work, atwhal enhancements and details of the
implementation.



1 Introduction

In last year’s report [1], we presented a basic infrastmecfar scale invariant feature detection
adapted from David Lowe’s SIFT algorithm [2]. The goal ofstork was to establish a generic
class of visuaGeneral Landmarkswhich could be generated and cataloged automatically gurin
a small body mission and then subsequently recognized émige localization of the spacecratft,
whether for navigation purposes, sample return or reaitiquif a scientifically interesting site.

The focus of feature detection work during this fiscal year lbeen on testing these techniques
in simulation and adapting them as needed based on perfoendinus, we have developed an
Estimation, Sensing and Perception (ESP) testbed in whielvision and estimation aspects of
the Small Body R&TD task have interfaced. This simulatiodienment has been the driver for
work in feature detection, both in terms of algorithmic nfaditions and implementation.

The focus of effort in the ESP testbed has thus far been a sisganario in which a space-
craft orbits a small body with- 500 m radius in an approximatey km orbit. We refer to this
as theTwice Around Study. The title is derived from a two stage process in which two oren
orbits of a candidate small body are performed. The firsttashised for catalog generation and
subsequent orbits to evaluate automatic localization eajddtory determination. In the current
version of the simulation, we use the ground truth spacetregéctory in combination with stereo
vision techniques to generate a catalog of landmarks,cctike Feature Catalog (FCAT). This cat-
alog contains the 3D positions of landmarks with associetedriances as well as the descriptors
used for later identification of the landmarks. Later, mediforbits are used to test the ability to
recognize previously seen landmarks. During the secorsl fsagimarks are detected, matched to
the catalog and stored in a Landmark Table (LMT) on a framé«éiye basis. The LMT contains
for each landmark, the bearing angles to its 3D position ertdiget body, associated covariance
estimates, and the landmark descriptors. The LMT is theplagto the state estimator, which
filters this data to estimate a trajectory for comparisonrtaugd truth. We also produce a vision-
based pose (position and attitude) estimate for the cammradingle frame measurements as both
a sanity check for the estimator and as an outlier detectiechamnism for the feature detection
algorithm. Finally, we produce an interest operator bassué-to-frame set of feature correspon-
dences. This uses normalized cross correlation to idefgéfures across adjacent frames. The
information is recorded in the Paired Feature Table (PFiTyi&ivery to the estimator. While the
PFT datatype lacks an absolute reference, it provides éniofigrmation for a velocity-like esti-
mate similar to the Descent Image Motion Estimation SysteiMES) on the Mars Exploration
Rover (MER) landers [3].

A parallel effort [4] is underway to use bundle adjustmenhtaques for catalog determination.
This will eliminate the current dependence on ground tregfettory for the catalog generation



step. However, since the majority of work this year has ubsedearlier version of the catalog
generation scheme, we will describe it in detail below.

We begin with an overview of modifications made to the workspreed in the last fiscal year
in response to challenges posed by integration of visiooralgns into the ESP testbed.

2 Algorithmic Enhancements

2.1 Robustness/ Outlier Reection

Our earliest attempts at integrating vision based landmeriction and identification into the ESP
testbed met with only marginal success. This was due in lpageto false matches in the LMT
being reported to the estimator. Thus, outlier rejectiot ilmcreased robustness of the matching
scheme have been a major focus of effort this year.

2.1.1 Poseestimation and RANSAC

Our current outlier rejection scheme used in constructied MT depends heavily on vision based
pose estimation. Pose estimation refers to recovery of iD@® position and attitude of a camera
based on image data, specifically known correspondenceg&et3D points and their 2D image
projections. This is exactly the setting in which the LMT ogges, since we match 3D landmarks
in the target coordinate frame with their projections in 2Bagery acquired during orbit. We
presented pose estimation as a possible side benefit of thputer vision work in last year’s
report [1], primarily for use as a sanity check on the estanalNow, in addition to this, we are
using it successfully for outlier rejection.

The principal is simple. SayR,T) € SE(3) is the Euclidean transformation between the
target and camera coordinate frames represented as @matadirix and translation vector. Then
in homogeneous pixel coordinates the camera projegtimina 3D pointP expressed in the body
frame of the target is given by

R P,
Pz 11 12 13 T, p
ﬁy =A [R | T] =A 21 22 T23 Ty Py (1)
D 31 T'32 33 T, 12



columgs

o
SMO.

Image (c‘oordinates in pixels)

y
np| O
(va :“y)o \E

Sensor (coordinates in mm)

Figure 1: A point (P,, P,, P,) is first transformed into the camera coordinate frame by theliiean
motion (R, T'). The resulting image on the sensor plane is transformedirg coordinates byl.

where the pixel coordinates pfare(p,, p,) = (2, 2) and
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with f,, f, representing the horizontal and vertical focal lengthhefuirtual cameras the skew-
ness of the sensor plane, and, u,) the pixel coordinates of the image center. In our simulation
these parameters are computed from an explicit set of redderages using standard calibration
techniques. In a real sensor, we must also compensate feingamity in the camera projection
model. However, this is a well understood process and werggitdere. The steps in Eq. 1 are
shown in graphical form in Fig. 1.

If (R, T) is known accurately, we can determine whether a given matttei LMT is false by
measuring its deviation in pixel coordinates from Eq. 1. Mprecisely, if the poinP projects to
(Tprojs Yproj) = (z—j, %) following Eq. 1 and the location of the matched image pointaoted by
the feature detection algorithm (i8,,,c.s, Ymeas), then outlier amounts to a threshold on

greproj = \/(«Tproj - xmeas>2 + (yproj - ymeas>2 (2)

Any point for which the reprojection errat..,.,; in EqQ. 2 is too large is rejected.
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However, our only mechanism for determiniqf, 7°) in the first place is the LMT. Provided
there are enough matches and under the assumption thatmastreect, we solve the pose prob-
lem using the RANSAC framework [5]. This involves recoverithe camera pose by standard
methods [6, 7] for several minimal subsets of the LMT. We thecept as valid the camera pose
which produces the smallest median error in Eq. 1 over alitgon the LMT. The resultingR, T')
is used for outlier detection. We outline the procedure.

e Form iterations:

- Randomly select entries from the LMT

- If n = 4 use [6] to solve pose

- If n > 4 initialize with [6] and refine with [7] to solve pose

- Compute the median error from Eq. 2 over all points in LMT

- If median error is smaller than previous smallest mediaaresave( R, T') as best
model

e Compute error for all points in LMT using be@k, T')
e Reject outliers using test based on fourth spread of erdissiy{ssed below)
e Construct LMT using landmark matches not rejected
e Recomputé R, T") using all inliers

In the above discussiom is chosen in a statistically meaningful way following [5]dabased on
estimates for likelihood of any given point in the LMT beinglid. We typically choose: = 5
unless there are too few points. Note that the algorithmrdesst in [7] is an iterative technique
that requires a minimum @f points. By its nature, it is subject to convergence and logaima
issues. On the other hand, the algorithm described in [6lgsbaaic, does not become trapped
in local minima, and works with as few as 4 points. Howeveis gomewhat less accurate. The
combination of the two has proved quite useful in our work.

The use of the median error for model estimation in the inoep labove is less prone to bias
due to single extreme outliers. Finally, the fourth spresad well established, simple procedure
for outlier elimination for many symmetric 1-dimension@ttibutions. Given a distributiod, let
med d) represent the median. Then the fourth sprefads defines by

do={ped:p<medd)} my,=medd,)
dy={ped:p>medd)} my =meddy)

F = mp; — my,
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Outliers are marked as points in the set
{ped:p<my—-15xFtUu{ped:p>mpy +15+xF}

In the case of a zero-mean, Gaussian distribution, thefdotahe fourth spread, i.en;; + 1.5F,
corresponds to approximately? standard deviations.

Observe in the above discussion that if the size of the LM¥ iS, pose estimation does not
help. Also, while we can characterize the probability of fivgda poor model given the likelihood
of any given match being bad, this probability is always tgethan zero. Hence, pose estimation
even in the case of sufficiently many points will minimize bot eliminate the possibility of bad
matches in the LMT.

We are still investigating techniques for systematic euntiejection in these and other difficult
cases. However, we currently have a few heuristics in plauewhave resulted in noticeable
improvements.

2.1.2 Heuristics

In the current version of the ESP testbed, the vision compiodees no intelligent pruning of

FCAT based on prior knowledge of spacecraft position. Weslgreatly increased the likelihood
of correct matches in the LMT by introducing a simple pruni@eghnique that processes the LMT
twice. In the first pass, we compute matches and then avenag®D vectors describing these
matched landmarks. This defines a principal direction. Vi@ tbrune the full catalog so that the
inner product of any vector with this principal directiorpssitive. Let

v = mean{v € FCAT : v € LMT})
FCAT, = {v € FCAT: v -7 > 0}

In the shorthand notation aboverefers only to the 3D vector associated with landmarks as ex-
pressed in the target coordinate frame, not the full costehthe FCAT or LMT associated with
a given landmark such as covariance data and descriptamatmn. A second pass computes
a new LMT from FCAT, only. This effectively restricts the catalog search to tbeipn of the
body facing the spacecraft. Even this minimal constraiati$eto significant improvements. First,
spurious matches on the other side of the body are ignorezbn8ethose matches which fail to
pass the uniqueness criterion for entry in the LMT (see [gpduse of similar features on the far
side of the body are now more likely to match correctly.

Another simple heuristic, which is useful in the case of chlgr 2 matches, is to admit any
landmark with a very strong match. In other words, if the d@sor extracted from an orbital



Figure 2:Example of outlier rejection on one frame, using synthetiagery in ESP testbed. Valid matches
to the catalog are shown in green, rejected outliers in red.

image matches a catalog descriptor to within some toler@raréable, depending on the body),
the match is always accepted.

In Fig. 2 we show the effect of applying the techniques oatimbove. Those landmarks
which are rejected as outliers are shown in red, while thdselware accepted as valid are shown
in green.

2.1.3 Homography and RANSAC

For direct frame-to-frame comparisons, we have also imptged a simple homography-based
outlier rejection scheme similar to the pose estimatioreswhoutlined irg2.1.1. This assumes
that two images are related by a plane homography so thatig any point in the first image
expressed in homogeneous coordinates, there exists amatrix H such that the corresponding
point ¢, in the second image satisfies

@=H- -q (3)

We explain Eq. 3 in a little more detail. L&t be a plane inR® spanned by vectorév, w}
expressed in some global coordinate franfe, w} represents an explicit choice of basis for
but the following discussion is independent of the particehoice. Suppose a camera images the
plane from two different positions given By R;,7;) | « = 1,2}. Any pointonp € P can be



expressed as
p=av+fw (4)

in the global frame. The homogeneous image coordingtafsp in each of the two camera frames
is given by
¢ = A[R; - p+ T} (5)

following Eq. 1. If we now substitute Eq. 4 into Eqg. 5 and sifyplwe obtain

¢ = A[R; (av+ pw)+ T}
= Hi-la 1]T (6)

One can show that if; is spanned by R; - v, R; - w} the planeP contains the image center of
the camera in position If we ignore this singular caséf; has full rank and is invertible. It then
follows from Eq. 6 that in homogeneous coordinates

g2 = H2‘[a B 1]T
= ﬁzﬁfl‘(h
= H-q

Note that the above discussion holds strictly only if allgsilie on a plane in space. However, in
many situations a near-planar assumption is adequate ul@raejection we proceed as with the
pose estimation framework replacing Eq. 1 with Eq. 3.

2.2 Enhancement to Scale | nvariance

We now describe a change to the core implementation of tharkedetector. This has given us
much better invariance to changes in scale than the previergson of the algorithm. We briefly
summarize the relevant portion of the previous approach.

Given an image, the algorithm extracts salient featuresftgreint scales. In this context,
“scale” refers to the portion of the frequency spectrum paed by the feature. In other words,
a filter tuned to the appropriate frequency will have a higgpomse at the given feature. This is
accomplished by constructing a stack of bandpass filterpts@f the image and finding extrema
in the stack. See [1] for details. In the past, we organizexidtack into a collection of octaves,
each containing multiple scales. Each octave containesl wih frequency content starting at
roughly half that of data at the same relative scale in theipus octave. This organizational
scheme followed the description in a pre-print version ¢f [Ris intended to optimize the scale
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Figure 3:A) The scale/octave organization used in earlier versidribeofeature detection algorithm. B)
The uniform scale spacing used in current version. The n@anization sacrifices some efficiency for

greater versatility.

calculation by requiring explicit computation of only onetave in the scale-space followed by
successive resampling to obtain other octaves.

We have found that at little expense to computational cesq2.3), we are able to produce
much greater invariance to scale by modifying this schemstebd of organizing in octaves and
scales, we create a simple image pyramid with uniform dhgtron in scale. We illustrate the
difference in Fig. 3.

We now present the new scheme in greater detail./[Lety) represent the original intensity
image, where the function returns the gray value of the image at pixel coordinéteg). Let
fscate D€ @ scale factor controlling the image resampling betwaecessive layers of the pyramid,
which we will call I,,. In other words, if dinjl, = I) = rows x cols is the original image size,

then

. rows cols
dim(L,) = —— x —
scale scale

Let G(x,y, o) be the 2D Gaussian kernel defined by

1 22 + y?

exX
2mo?

The equivalent to the Difference of Gaussians (DoG) spaaiefised in [1], i.e. the bandpass

G(x,y,0) =



filtered stack resulting from the original image, is given by

Dn(xv y) = ]n(x7y) * {G(Ilf7y, o - fscale) - G(%y, U)} (7)

where thex operator represents convolution. e, } are pictured in part B. of Fig. 3. In parallel,
we also compute and say®, } and{D;"} defined as

D;—i—l(x? y) = ]n(flf, y) * [G(‘T7 Yy,o - szcale) - G(ZE’, Yy,o - fscale)]
g
D:L_—l(x7y) = In(l’,y)* [G<$7y7a)_G<x7y>f—l)]

Note that because of the combination of image rescalingfadtiange in the width of the Gaus-
sian kernelsD;"_, has the same frequency contenf3s ; but the same image dimensionsias
Similarly, D, , has the frequency content 6%, ., but also has the dimensionsbf,. This allows
us to easily identify salient points in the DoG stack by disecomparing images of identical size
but separated uniformly in frequency. In other words, a p6ip, y,) € D, is a candidate for a
feature provided

(%7%) = argmax (maX(Dn(.CL’,y),D:_1<l’,y>,D;+1<l’,y>>)
||z—zol|<1,|ly—yol <1
or
(xoayo) = argmin (min(Dn(ZL'7y),D:_l(ZL'7y),D;+1(ZL'7y)))

llz—=o||<L,|ly—yol|<1

We demonstrate the effectiveness of this new scheme usiageip from the Deep Impact
mission. In Fig. 4 can be seen four images of the Tempel 1 ctaken by the Impactor imager
at widely varying distances. Using the previous versiorheffeature algorithm, we were unable
to find enough valid matches between frames to compute inmmagsforms and register one frame
to another. With the new version of the algorithm, we can matcer scale changes exceeding a
factor of 2. Note that the registration shown in E), F) and 6lrig. 4 uses matched landmarks
directly and is completely automatic; there is no humanradton or guidance involved. The
match between successive frames is illustrated in red. Ggpfor any image pair, the first frame
is called/, and the second is callefj. The feature matching algorithm produces discrete sets
of matched feature$q? € I, : i = 1.n} and{¢® € I, : i = 1..n} expressed in homogeneous
coordinates. Image warp is then accomplished by computpigree homography?® such that

e=Y _|lH,-qf -l
i=1

is minimized. Then for all point$p € I, }, we compute the coordinaté#/ ~'p} and superimpose
the result on/, in red. The computed homography directly indicates thetivglascale change
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Figure 4:A)-D) Four images of Tempel 1 acquired by the Deep Impact ittgga E) Automatic registration
of first image pair using feature algorithm. F) Automaticiségtion of second image pair. G) Automatic
registration of third image pair. H) Registration of 1st atitl images by concatenation of pairwise trans-
forms.

between frames. This is a factorof2 for the first to second frame and 3 for the second to third
and third to fourth frames. Suppose that the three pairvesedgraphies are labeldd?, H¢ and
H?. Then we compute a joint homography across all three imaige ipa

H{=H) - Hy - H!

In H) of Fig. 4, we show the results of usidg? to register the first and last of the four frames.
This shows a correct registration over a scale factor agping 20.

This has important implications for FCAT. It indicates thaa can construct a chain of matches
to identify landmarks from very close imagery (e.g. durirggcent) to counterparts on a distant
scale, allowing us to maintain global context even durirugelapproach.

2.2.1 [llumination Invariance

In the previous report, we showed a number of simple teclesigo enhance illumination invari-
ance. The basic idea was to perform an approximation of gplagghfilter by doing background
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subtraction prior to computing features. Thus/ iis the original intensity image, we compute
J =1 — (I = B) for B, an averaging box filter of size x n. We have since concluded that even
this simple scheme introduces problems in scale invariahgguming the inherent scale of objects
in the scene has changed, usiBg of the same size in both images has the effect of shifting the
DoG pyramids in Fig. 3 in a way that fails to reflect scene cont€he ideal scheme is as follows:

If objects in/, are scaled by a factor gfwith respect to their counterparts ip. We should use

Jo=1I,— (I, * B,)
Jb = ]b - (Ib * Bn.f)

This implies some knowledge of the factér While we cannot assume thgtis known with
accuracy, even a rough approximation from altimetry orestaformation is adequate. As an
example, consider frames A) and B) of Fig. 4. In the earliezdibox filter approach we found a
total of 8 matches after filtering, one of which was false. Ha hew scheme, the filter size used
for the first image is chosen to be approximately one thircsthe used for the second. The actual
scale change as determined from the homography transfanpwted between the two frames is
2.28. With this modification, we obtain 26 matches, all of ethare correct.

2.3 Speedup
The feature detection algorithm can be divided into fougesa
e Stage 1: Scale-space generation
e Stage 2: Interest point detection and filtering
e Stage 3: Feature vector generation
e Stage 4: Feature matching

Although our current ESP testbed is primarily for proof oficept and is written mostly in Matlab,
we have, nevertheless, made a number of modifications teasercomputation time. The most
significant impact has been through information reuse.i&anrkrsions of the algorithm performed
a number of redundant gradient computations during botlntieeest point detection and feature
vector generation stages. Some additional allocation @égssing time and memory during the
early scale-space generation stage has greatly reducegutatonal time for these later, more
expensive stages. The final feature matching stage has peémp by a factor of 10 by rewriting
the most time consuming part of the code in C with a MEX integféo Matlab. Components of
the gradient computation and image rescaling also now us¥.Nbifice the two versions of the
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Figure 5:Imagery used for test results recorded in Table 1. The righge is approximately 30% smaller
than the left.

algorithm produce different numbers of features and matchetime comparison must be done
with caution. We show results for representative run of w@ algorithms on thé12 x 384 reso-
lution imagery shown in Fig. 5. Note that there is a modesaté scale change between frames.
We compare the scale-space generation times directlypbbbth stages 2 and 3 above, we divide
total time by the number of detected features. For stage 4livide total time by the product of
the number of features detected in each of the two imagesécagime per comparison for match
evaluation. Finally, we record the total number of matchestae total runtime per match. These
results are recorded in Table 1. The dramatic increase itotaenumber of matched features is
entirely due to the algorithmic changesiin2. The more relevant numbers for evaluating speedup
are the total time/match and time/feature vector. Thesegases have been sped up significantly.

Old Implementationn New Implementatior
Stage 1 time 3.15s 5.60 s
Stage 2 time/feature 3.16 x 1073 s 1.99 x 1073 s
Stage 3 time/feature 9.06 x 1073 s 5.84 x 107*s
Stage 4 time/comparison  9.37 x 107%s 9.32x107"s
Features matched 36 341
Total time/match 0.95s 0.07 s

Table 1:Runtimes for old and new algorithm implementations for a glanfieature pair shown in Fig. 5
with moderate scale change.
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3 Twice Around Study

The computer vision component of the Twice Around Study ie®f 3 primary contributions.
These are (1) catalog generation, (2) landmark identioaéind (3) frame-to-frame tracking.
These three components results in the FCAT, LMT and PFTeadsely. We have reported in
[4] recent advances in generating the feature catalog framd® Adjustment, in the absence of
trajectory information. However, for the purposes of trepart, we present a trajectory based
solution used this year for the majority of our tests.

3.1 Catalog Generation

The current version of the twice around study begins withnéral orbit with known time history
and target to camera transformations. Rendering softwemmergtes the camera view during orbit.
The current version of the rendering drapes a simple imagea8D model of the target. Work is
currently underway to produce more photo-realistic moa@skol renderings [8].

We populate FCAT by computing feature matches across ssigegsnage pairs or triplets.
Spurious matches are eliminated using the epipolar cans{i@ee [1]) in the case of pairwise
matching and the trifocal constraint in the case of imagedrs. Like the epipolar constraint, the
trifocal constraint is a linear set of relationships betw&images of a static scene encoded in
the so-called trifocal tensor. Details can be found in [ShisTformulation, like the fundamental
matrix in the epipolar case, does not require explicit cotagon of camera pose or 3D structure.
It provides a direct pixel level constraint on point corresgences across 3 frames.

Our early implementation of FCAT used the epipolar constrailhe latest version uses the
trifocal constraint for greater stability of landmarks@ss viewpoints. In other words, a landmark
which is seen in at least 3 frames and satisfies the trifoaadtcaint is (1) less like to be a false
match and (2) more likely to remain stable over multiple \peimts. The end result is fewer but
better landmarks in FCAT. An example run usirg200 images in a single orbit around a model
of the asteroid Itokawa produced a catalog with 3050 entvidsthe epipolar constraint and 1367
entries with the trifocal constraint.

Once a match is made across two or three images, we use gtaregulation techniques to
localize the point in space. The 3D data is recorded alonly thi feature descriptors in FCAT.
A second pass through the just generated FCAT prunes anicdigéntries. Duplicates are eval-
uated by their proximity in 3D. Currently, any two landmarkihin 3 meters of one another are
considered redundant. This threshold is a function of tasige and image resolution. Imagery of
several frames of an orbit of the Itokawa model and the aasstpruned FCAT are shown in Fig.
6.
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Figure 6:Three rendered frames from orbit of Itokawa model shown abBeconstructed points in FCAT
shown below.

Naturally, the quality of the 3D estimate of any point deped the feature localization in
the image as well as on the relative camera and scene georigisyinformation is essential to
the state estimation portion of the ESP testbed. In ordeapbuce this, we compute an explicit
covariance.

3.1.1 Covarianceestimatesin FCAT

The 3D triangulation error in generation of the catalog isiaction of the camera motion, the
intrinsic camera parameters, and the image plane match &imce the trajectory is known and
the camera is assumed calibrated, the first two error sodice®t contribute. We consider the
match error.

Suppose a coordinate frame is attached to the camera4ndthng the optical axis and and
Y on the image plane. Suppose further that we have match dreongeen the first and second
frame of magnitudé\z and Ay pixels in the image plane withp = /(Az)? + (Ay)2.

The dependence of stereo triangulation on these errorslisungerstood. See [10] for an
overview. Assuming the camera has approximately the saeveing directionZ in consecutive
images, a generally valid assumption over two or three featie stereo error in this direction is
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related to the image plane match ertgrs by

ZZ

AZ =
f-B

Ap (8)

where the camera focal length in pixelsfisthe baseline of the motion iB in meters and the
distance to the 3D target point . If Ap is interpreted as a standard deviation, tiet is the
standard deviation in recovered distance along the viediregtion. The lateral errora X and
AY in triangulation assuming match errors&f and Ay in the image plane are given by

AX = ?Az 9)
Y

AY = —A
f )

In the trifocal case, we average the quantities in Eqs. 8 aode® all three stereo pairs arising
from the 3 camera positions. In the frame of the camera, tloe eovariance can be approximated

by

(AX)? 0 0
Ccamera = 0 (AY)Z 0
0 0 (AZ)

Let R be the rotation matrix relating the average over all camenaés in the pair or triplet used
for triangulation to the body frame of the target. Then

T
Ctarget =R CcameraR

What remains to be determined are the quantifies Ay and Ap. In standard stereo methods,
these quantities can be determined from the subpixel appadion in the correlator. However, in
our case, we match only points in descriptor space and rebflyvbn the localization accuracy
of the feature detection algorithm. There is no direct imbgeed match. Thus, the match error
is not easily quantified. However, we have determined ewadlyi thatAx = Ay = 0.5 pixel

is a reasonable figure, and our estimates are currently lmsdtese numbers. More systematic
techniques for evaluating this match error are under censitn. One candidate method is to use
a directly measured triangulation error on a known 3D stmgcto infer the associated match error.

3.2 Landmark Detection

Once the catalog has been produced, we generate modifiesd withi known trajectories around
the same body and render new images. For each frame in therbgweguence, we find features
and match to FCAT. This data is recorded in the LMT and passéuket state estimator. For each
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error = (-1.97 m, 0.39m, 3.54 m)

Figure 7: On the left is the final frame of the second pass in an exampleofuhe twice around study
showing correctly matched features. On the right is showrgtiound truth trajectory as a moving frame in
green, and the vision based camera localization from the BMBlack dots. The error is uniformly bounded
by ~ 10 m for this2 km orbit.

matched landmark, the LMT records the 3D position of the haak from FCAT, bearing angles in
the image frame to the landmark along with covariance eséispand the full landmark descriptor.

The details of the match mechanism are covered in [1] and fioations to the basic method
to enhance robustness were described aboy2.lh We show in Fig. 7 the results from a repre-
sentative run of the twice around study using the body alstupad in Fig. 2. The original catalog
was produced from a sequence of 200 images in one complateinasar orbit of the~ 500 m
body at a distance of 2 km from the center of mass. In the second pass, we took a simita
modified orbit and matched landmarks against 70 frames. Fghows the ground truth orbit as
a moving coordinate frame in green and the recovered canosiiqn as a series of black dots.
Note that these are single-frame position estimates ussigrnvbased methods only. We do not
record the integrated result of the estimator. Our only psegis to verify the quality of matches
in the LMT. We computed the error covariance to find thattthesrror in the direction of largest
uncertainty was 5.7 m. The absolute position error (normD&8&or) was uniformly bounded by
23 m and had an RMS value of 8 m.
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Figure 8: Frame-to-frame matches recorded in the PFT. Detectecesttppoints on in the first image are
shown in blue. Matched points from correlation are shownrgeg on the second image. The correspon-
dence is indicated by red lines connecting matching points.

3.3 Frame-to-FrameMatching: PFT

We now describe our implementation of the PFT or Paired Fedtable, which records frame to
frame matches. These are not necessarily landmarks, entsahage points which are expected
to remain stable only over a short duration (e.g. betweecessive frames). The approach taken is
to identify interest points using the Harris operator [Hl$tandard corner detector well established
in computer vision. Details were also reviewed in a slighifferent context in [1].

Once a set of interest points are detected, we attempt tdrttegse in the second frame using
the normalized cross-correlation borrowed from standgerks vision techniques. After integer
correlation, we perform a subpixel refinement using coti@hescores from thd x 3 neighborhood
of the best match. Suppose interest pgiin the first frame matcheg = (z,, y,) in the second
after correlation. Let,(z,y) be the correlation score betwegrin the first frame andz, y) in
the second. We find the quadratiovhich best approximatesS, in a3 x 3 neighborhood of by
minimizing

To+1 Yo+1

€= Z Z (S(z,y) — Cp(x,y))2

T=To—1y=yo—1
Then the subpixel approximation is the paint (z,, 7,) such thatS(z,, ,) is a local minimum.
An example of the frame to frame match recorded in the PFTasvshn Fig. 8.
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4 Conclusion and Future Work

We have presented in this report a number of enhancementadatitions to the feature detec-
tion work reported last year. Much of this effort has beerefiby the needs of the Twice Around
Study. For example, robustness became a prime issue whibhweeattempted to address through-
out this year. Various other implementation details reggiithange or update to earlier methods.
We have also greatly enhanced the scale invariance extibytehe early version of the feature
algorithm.

From the vision perspective, the most significant challerigenext year will involve extending
the regime of applicability of the feature algorithms. Weéemded to test more widely varying
orbits and changes in illumination. The latter has not yetnbadequately addressed, but we are
investigating work in the literature on simple parametliighting models. We are also continuing
to explore techniques for outlier rejection to accommodtiaanore challenging tests we anticipate
in the next year, should the task be funded.
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